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Abstract

We analyze a composite Higgs model with the minimal content that allows
a light Standard-Model-like Higgs boson, potentially just above the current
LEP limit. The Higgs boson is a bound state made up of the top quark and a
heavy vector-like quark. The model predicts that only one other bound state
may be lighter than the electroweak scale, namely a CP-odd neutral scalar.
Several other composite scalars are expected to have masses in the TeV range.
If the Higgs decay into a pair of CP-odd scalars is kinematically open, then
this decay mode is dominant, with important implications for Higgs searches.
The lower bound on the CP-odd scalar mass is loose, in some cases as low as
~ 100 MeV, being set only by astrophysical constraints.
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1 Introduction

The Standard Model is phenomenologically successful as an effective theory below some
energy scale where new degrees of freedom (other than the yet-to-be-discovered Higgs
boson) should become relevant. Generic evidence for new physics is provided by the
unphysical Landau poles for the quartic, hypercharge and Yukawa couplings within the
Standard Model, and by the existence of the gravitational interactions. Barring an un-

likely tuning of the parameters, the scale M, of new physics that has an impact on the
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Higgs self-energy should be in the TeV range or below. The nature of this new physics re-
mains unknown, and until experimental evidence for physics beyond the Standard Model
will emerge, we should seek plausible explanations or alternatives to the less compelling
aspects of the Standard Model. One such aspect is that the Higgs doublet is an ad-hoc
part of the Standard Model, which fits well the data but does not have an intrinsic moti-
vation. This remains true for supersymmetric or grand unified extensions of the Standard
Model. By contrast, the fermion content of the Standard Model is better motivated, due
to the anomaly cancellations and chiral symmetries.

It is therefore useful to investigate the possibility that the Higgs doublet is not a fun-
damental degree of freedom but rather a bound state, that appears only in the effective
theory below the scale M.. Composite models in which the Higgs doublet is made up
of some new fermions which belong to chiral representations of the electroweak gauge
group have been known for a long time [1]. Currently, the electroweak precision measure-
ments constrain tightly the number of new chiral fermions, so that this type of models is
disfavored unless there are non-perturbative effects or other phenomena that reduce the
deviations of the electroweak observables.

An economical way of satisfying the constraints from the electroweak data is to bind
a Higgs doublet out of the known fermions. The top quark, having the mass close to the
electroweak scale, is a prime candidate for a Higgs constituent. However, if the Higgs
doublet were a tpt; bound state, then a fairly reliable relation between the top quark
mass, my, and the electroweak scale, v &~ 246 GeV, can be derived [2, 3, 4]. Given the
measured value m; ~ 175 GeV, models of this type could produce sufficiently large W
and Z masses only if the compositeness scale is exponentially larger than the electroweak

scale, and therefore they require fine-tuning.

Thus, it appears necessary that some new states play the role of Higgs constituents.
A minimal choice is to introduce a vector-like quark, y, and non-perturbative four-quark
interactions that involve the y and ¢. Consequently, the vacuum becomes populated
with xgt; virtual pairs which make it opaque to the W and Z, so that the electroweak
symmetry is broken. Furthermore, the ¢ and x mix, allowing m; &~ 175 GeV and a y mass
in the TeV range. This is the top condensation seesaw mechanism [5]. Below the scale
of the four-quark operators, the effective theory contains a number of composite scalars,
including a CP-even neutral Higgs boson which is mainly a gtz bound state [6]. This
theory has a decoupling limit in which at low energy it behaves as the Standard Model,
and therefore is phenomenologically viable.



The four-quark interactions should be softened at high energy within a renormaliz-
able or finite theory. Examples of this type involve new spontaneously broken gauge

symmetries [5, 6, 7] or extra dimensions accessible to the gluons [8, 9].

In this paper we study in detail a minimal composite model which allows a light
Standard-Model-like Higgs boson. This model is based on the top condensation see-
saw mechanism, and the groundwork for its analysis is the effective potential formalism
presented in Ref. [6]. Here we focus on the low-energy effective theory and its phenomeno-
logical implications.

In Section 2 we discuss the compositeness condition, and we identify a minimal set of

ingredients necessary for the existence of a light composite Higgs boson.

In Section 3 we write down the effective potential, and we discuss the Higgs boson
spectrum. We establish that, besides the lightest neutral CP-even scalar, the composite
Higgs sector may include only one physical state below a scale of order 1 TeV. This is a

CP-odd scalar, which we will generically call the composite axion.

The properties of the composite axion and lightest neutral CP-even Higgs boson are
presented in Section 4. In Section 5 we turn to the Higgs couplings to the quarks and

leptons.

In Section 6 we study the lower bounds on the composite axion mass. In Section
7 we compare the Minimal Composite Higgs Model with the Minimal Supersymmetric
Standard Model, and we make some final remarks on phenomenology. In the Appendix

we list the extremization conditions for the effective potential.

2 Ingredients of a Minimal Composite Higgs Model

The Higgs sector of the Standard Model depends mainly on three parameters: the Higgs
doublet squared-mass, M%, the quartic coupling, A, and the top Yukawa coupling, y; =
m4v/2/v ~ 1. The relevant piece of the Lagrangian at the electroweak scale is given by
A _
Lsu(v) = (DYHY(D,H) — M%(v)H'H — %(H*HY —y, (zp%tRH + h.c.) . (2.1)
where the Lagrangian is defined at the electroweak scale, 13 is the top-bottom left-handed
doublet, and we have chosen H to have hypercharge +1 for convenience. The other

couplings are of little relevance for the renormalization group evolution of these three

parameters (one possible exception would be large neutrino Yukawa couplings, which



in the presence of large Majorana masses yield acceptable neutrino masses; we will not

consider this possibility here).

If the Higgs doublet is a bound state with a compositeness scale M., then at scales
above M, the Higgs is no longer a physical degree of freedom. Therefore, its kinetic term
should vanish at M.. We will refer to this requirement as the compositeness condition
[2, 10]. Note that this is equivalent with the statement that all the Higgs parameters blow

up at M, if the kinetic term normalization is fixed.

2.1 The vector-like quark

The top quark loop correction to the Higgs kinetic term is negative, diminishing the wave
function renormalization, suggestive of the possibility that the Higgs doublet is a txtr,
bound state [2, 3, 4]. However, the top Yukawa coupling is perturbative, y; ~ 1, and the
kinetic term may vanish only if the M, scale is exponentially higher than the electroweak
scale, such that the logarithm overcomes the loop factor. Although a large hierarchy
between M, and the electroweak scale cannot be ruled out, we will ignore this possibility

due to a lack of explanation of the exponential fine-tuning required in that case.

Therefore, the compositeness condition requires new physics above the electroweak
scale in order to speed up the running of the Higgs parameters. A simple choice is to
include a vector-like quark, x, which has the same transformation properties under the
Standard Model gauge group as tg, and a mass m, > v. This introduces a new Yukawa
coupling:

—3
—¢ (PrxrH +he.) . (2.2)

If € is sufficiently large, then the x contribution to the Higgs self-energy may lead to the
cancellation of the Higgs kinetic term at a scale M, which is not hierarchically bigger
than m,. However, in this case the renormalization group evolution is nonperturbative
(the cancellation of the Higgs kinetic term requires the loop expansion parameter to be
of order one), and a very precise computation is not within reach. Fortunately, the x
is a color triplet, so that we can use an expansion in 1/N,, where N, is the number of
colors. In this case the leading effects of x on the Higgs parameters are the same as
the perturbative one-loop contributions. Although it is hard to estimate precisely how
large are the corrections from the non-leading- N, terms, trading the physical problem of
fine-tuning M./m, > 1 for the computational problem at M, ~ m, seems justified. In

practice, these two problems may be balanced by considering a small hierarchy between
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Figure 1: Large-N, contributions to the Higgs doublet self-energy and quartic coupling.

M. and m,, such that the fine-tuning is not excessive while the £ Yukawa coupling is not

much larger than one.

At a scale yp > m,, the Higgs sector takes the form
y A
Lounlt) = Zulu)(DHY(D,H) — Mi(wH H ~ 2 (at e

— [1 (witr + €xr) H + myXpxr +hec] (2.3)

while below m, the x is integrated out and we recover the Standard Model.

A straightforward computation of the one-loop Higgs self-energy and quartic coupling

(see Fig. 1) gives

ZH([I,) =1 Nc£2 In <u—2> )

1672 mi

Ap) = Mo)+28 [ Zp(p) — 1],

M) = M)+ N (i 0?) | (2.4

where we neglected the top-quark contributions. The compositeness condition, Zy (M,) =

0, yields
B 872
~ N.In(M./m,) "

Since the ratio M./m,, is unlikely to be exponentially large, it follows that £ > 1, suggest-

52

(2.5)

ing that the Higgs doublet is mainly a X z%? bound state. But as stated before, keeping a
reasonably small hierarchy between M, and m, allows more control over the computation.
For example, M,./m, ~ 10 — 100 gives & ~ 3.4 — 2.4.
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If we impose A(u) > 0 at all scales below M., so that the scalar potential is bounded

from below, then the quartic coupling at the electroweak scale,
A(w) = A(M;) + 267, (2.6)

is significantly larger than one, corresponding to a large Higgs boson mass, v\/)Tv) . After
the non-leading contributions (from finite-N,, top quark, electroweak, and QCD effects)
are taken into account, we expect the Higgs boson mass to be close to the unitarity bound
of 0.7 - 0.9 TeV.

2.2 Extending the Higgs sector

So far we have shown that the compositeness condition, Zgz(M,.) = 0, suffices to prove
that the Higgs doublet cannot be a 7z} bound state without exponential fine-tuning,
while it can be a Y z%? bound state provided the Higgs boson is quite heavy.

Next we would like to identify the circumstances which allow the composite Higgs
boson to be light, close to the current experimental bounds. The large quartic coupling
is a rather generic feature of a composite Higgs sector. However, only in the Standard
Model the Higgs boson mass is straightforwardly determined by the quartic coupling.
For extended Higgs sectors, the mixing between different CP-even scalars may drive the
lightest neutral Higgs boson significantly below the Standard Model unitarity bound. In
order to allow a large scalar mixing, the constituents of the composite Higgs sector should
mix themselves. For the minimal fermion content, i.e. three generations of quarks and
leptons plus the vector-like quark x, the only fields that may have large mixings with the
Xr and 1} are the ¢tz and xg.

Therefore, we will consider a composite Higgs sector which involves four scalar fields:
two weak-doublets, H, ~ Xz¢; and H; ~ tgy)}, and two weak-singlets, @,; ~ trx, and
xx ~ XrXz- Note that the case where one of the fermion fields is not a Higgs constituent
can be recovered by taking the masses of the corresponding two scalars to infinity, but in

that case the Higgs boson is heavy [9].

For an extended Higgs sector, a natural formulation of the compositeness condition
is that all scalar kinetic terms vanish at the same scale. In the large-/N, limit, the only
contribution to a scalar kinetic term comes from the fermions with large Yukawa couplings
to that composite scalar, namely from its constituents. Hence, the chiral symmetry of

the constituents, U(3);, x U(2)g, is preserved by the Yukawa couplings of the composite



scalars: .
£(vh, xu) @ ( " ) +he. (2.7)
XR

where the scalar ® is a 3 X 2 complex matrix,

[or o)
d = , (2.8)
¢xt (bxx

with the phase of H, chosen negative for later convenience. Note that the SU(2)w xU(1)y

electroweak symmetry is a gauged subgroup of this chiral symmetry.

Likewise, the leading- /N, contributions to the running of the quartic couplings between
the scales v and p is U(3), x U(2)r symmetric:

»Cquartic(,uf) = Equartic(v) - @TY [(QT(I))Q] . (29)

There are no other U(3), x U(2)r symmetric terms in the scalar potential.

Since the x quark is vector-like, and transforms under the Standard Model gauge

group as the tg, we can write two gauge invariant mass terms:

Pt XLtR + P Xz X R + hoc. (2.10)

These break explicitly the chiral symmetry down to SU(2)y x U(1)y x U(1) g, where the

last group refers to a global baryon number. The effect of these explicit mass terms is to

tr (Xr)

¢xt (¢xx)
XL

Figure 2: Tadpole terms for the electroweak singlet scalars.

induce tadpole terms for the weak-singlet scalars in the effective potential (see Fig. 2):
— (Cxt¢xt -+ CXX¢XX —+ hC) . (211)

The tadpole coefficients may be estimated by cutting-off the loop integral at M,.. For

Pt xox < Me,

N&
Cxt,xx = @Mxt,xxjuc2 . (2.12)



Another effect of these explicit mass terms is to induce trilinear scalar terms proportional

with 1y vy, due to the large- N, running between the scales v and M,.

A generic high energy theory at the scale M, gives rise to the most general mass terms
for the composite scalars, which also break explicitly the U(3);, x U(2)g chiral symmetry
down to SU(2)w x U(1)y x U(1)p. Putting together all these terms, the scalar potential
for the two-doublet-two-singlet composite Higgs sector has all possible gauge invariant
terms and is hard to analyze. In order to progress we need to make some assumptions
about the high energy theory that is responsible for binding together the x, tr and ?

within the composite scalars.

First, we can invoke a small hierarchy between the compositeness scale and the masses
of the composite scalars, as mentioned in section 2.1. As a result, the trilinear, quartic
and higher-dimensional Higgs couplings at the M, scale are small, suppressed by powers
of the M,/m, ratio. Second, we will see in section 3.3 that the sector of the high-energy
theory responsible for binding the composite Higgs sector is likely to preserve a global
U(1); x U(1), x U(1)p subgroup of the chiral symmetry. This symmetry precludes the
presence of mass terms that mix the doublets or the singlets in the effective potential. The
quark charges under this symmetry are determined only up to a unitary transformation. A
simple basis is that where only ¢z and xg are charged under U(1); and U(1),, respectively.
One linear combination of these two U(1)’s has an axial QCD anomaly, but this effect

may be neglected as we will argue in Section 6.

With these assumptions, one can easily integrate out the composite scalars at scales
above M., where they can be treated as non-propagating (spurion) fields. This bottom-up
approach results in the following four-quark operators at the scale M.,:

2
M2 5 (Xexr) (Xrx1)
(2.13)

Altogether, there are seven parameters: the four coefficients of the above operators, the

2

9 _ 9z - -
Lefr = wx (%XR) (X;ﬂﬁi) = (%tR) <tR1/Ji) M2 5 (Xetr) (Trxe)+
two masses (i, and p,:), and the overall scale M. The effective potential below the
scale M., is sufficiently simple to be analyzed analytically. Before doing so in Section 3, we

will argue in the remainder of this Section that the assumptions made here are realistic.

2.3 Candidates for physics above the compositeness scale

The basic assumption we are making for an extended composite Higgs sector is that

all scalar kinetic terms vanish at the same scale, referred to as the compositeness scale



M,. Therefore, the composite scalars are no longer physical degrees of freedom and they
should be integrated out above M,.. This gives rise to higher-dimensional operators which

at high-energy should be replaced by a renormalizable or finite theory.

A conspicuous direction for seeking such a high-energy theory is to consider some new
gauge dynamics which binds the ¢ and x within the composite scalars. Such dynamics
cannot be confining because the top has already been observed by the CDF and DO
collaborations. On the other hand, the new gauge interactions have to be rather strongly
coupled at the compositeness scale in order to deeply bind the Higgs doublets and trigger
the electroweak phase transition. Therefore, unless the new physics is very unconventional
right above the compositeness scale, the new gauge interactions must be asymptotically

free. These requirements single out spontaneously broken non-Abelian gauge theories.

The choice of a gauge group is further restricted if no new chiral generations of fermions
are introduced. The representations of the new non-Abelian gauge group may coincide
with those of SU(3)¢, as in topcolor [11], or may correspond to some flavor or family
symmetry [7].

The compositeness scale is approximately given by the masses of the heavy gauge
bosons. Below M., the gauge bosons are integrated out resulting in higher-dimensional
operators, including those listed in eq. (2.13). The four-quark operators with left-left
or right-right current-current structure do not contribute to the effective potential in
the large-N, limit (though they do contribute to observables, most importantly to the p
parameter [12, 13], but these contributions are sufficiently small for M, above a few TeV
[14]). All other four-quark operators which are invariant under the Standard Model gauge
group and involve only the ¢y, tg and x fields violate the global U(1), x U(1), symmetry,

and are not expected to be induced by heavy gauge boson exchanges.

Operators of dimension-8 or higher are also induced by the gauge dynamics. However,
their effects are negligible at scales significantly below M,.. Therefore it is convenient
to ignore them by arranging a small hierarchy between A, and the composite scalar
masses. Such a hierarchy arises if there is a second order phase transition in which a
continuous variation of the gauge coupling induces a continuous variation of the scalar
masses. There are various arguments, based in general on the large-/N, limit, indicating
that a spontaneously broken gauge group leads indeed to a second order phase transition
[13, 15]. In practice, since we do not require an exponential hierarchy, it is sufficient to

have a weakly first order phase transition.

The new gauge dynamics should be flavor dependent, so that only the top and y



acquire large masses. This can be realized in various ways. The strongly coupled gauge
interaction may act only on the third generation quarks and on the y, while the splitting
between the x, t, b masses may be given by some perturbative interactions. Examples of
this type have been given in [5, 6]. Alternatively, the strongly coupled gauge interaction
may be flavor universal, with the flavor breaking provided by an extended vector-like

quark sector [7].
Above the M, scale there must be some additional physics that leads to the sponta-

neously breaking of the non-Abelian gauge symmetry responsible for Higgs compositeness.
This may involve new gauge dynamics, or fundamental scalars and supersymmetry. Yet
another alternative may be provided by quantum gravitational effects if gravity is modi-
fied at short distance [16, 17, 18] such that it becomes strong at a scale in the multi-TeV

range, not far above M..

Instead of a new gauge symmetry, the binding of the Higgs sector may be produced by
the Standard Model gauge bosons propagating in extra dimensions [8, 9] of radius 1/M..
Basically, the exchange of Kaluza-Klein modes of the gluons induces four-quark operators
of the type (2.13). Although the Kaluza-Klein modes are weakly coupled at a TeV scales,
the combined effect of all modes is nonperturbative. This is also consistent with gauge
coupling unification at a scale below 100 TeV [19], albeit the theoretical uncertainties are

somewhat larger than in the Minimal Supersymmetric Standard Model.

Moreover, the extra dimensions allow new explanations for flavor symmetry breaking,
such as flavor-dependent positions of the fermions in the extra dimensions [20], messen-
gers of flavor-breaking propagating in the bulk [21], or exponential suppressions due to
renormalization effects [22]. The extra dimensions could also provide a natural reason
for the existence of the vector-like quark, because the y has the same gauge quantum

numbers as the Kaluza-Klein modes of the tg. This idea however requires further study.

The gauge theories in extra dimensions are non-renormalizable, so that new physics
should soften the interactions at a scale close to the compactification scale. This physics
may be based on an underlying theory that includes quantum gravity, such as string or
M theory. Alternatively, a physical cut-off to the interactions of the Kaluza-Klein modes
could be set by the brane recoil [23], potentially allowing the fundamental (string) scale

to be substantially higher than the compactification scale.
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3 The Two-Doublet-Two-Singlet Higgs Sector

In this section we study the composite Higgs sector which includes two weak-doublets, H;
and H,, and two weak-singlets, ¢,; and ¢,,. The effective potential is determined based
on the following four assumptions discussed in section 2.2:

1. The compositeness condition: the kinetic terms of all composite scalars vanish at the
same scale M.,.

2. There is a separation between the compositeness scale and the scalar masses.

3. The interactions which bind the composite scalars preserve the U(1); x U(1), chiral
symmetry of the tz and xg quarks.

4. The large-N, limit is a reasonable approximation for computing the effects of the strong

dynamics responsible for compositeness.

The effective potential below the compositeness scale is given by

V = % [(HJH:& + (/5;r<t¢xt)2 + (H)JQHX + ¢Lx¢xx)2 +2 'HtTHX - ¢Lt¢xx‘2]

+M1527:HJH75 + foH;Hx + Mit@ct‘fsxt + M;xgblcx(/ﬁxx

+ (Cxt¢xt + CXX¢XX + hC) (31)

The seven parameters listed at the end of section 2.2 have been replaced by four real
squared-mass parameters, two tadpole coefficients (chosen positive), and the quartic cou-
pling. With the exception of A which can be computed in the large-N, limit and depends
only logarithmically on M., the other parameters are essentially free, and remain to be

determined within the underlying theory above the compositeness scale.

The effective potential is SU(2)w x U(1)y and CP invariant, and has a U(1), x U(1),,
global symmetry softly broken by the tadpole terms. The tadpole terms also force the
¢yt and ¢y, to have non-zero VEVs. For M7, < 0, there is a range of parameters where
the H, doublet has a non-zero VEV, breaking the electroweak symmetry. In that case,
the third term of V' provides a tadpole for H;, which acquires a VEV too. Finally, the
condition M2 > 0 is sufficient to keep the VEVs of the two doublets aligned, leaving the
photon massless:

75 [vcos B+ Ry + i (A%sin B — G cos )]

Ht - I
H=sin— G cosf3
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L [v sin 8 + h{, — i (A% cos 3+ G° sinﬂ)]

2

H, = ,
— (H ™ cos 3+ G~ sin f3)
1 vsin 3 .
¢Xt = ﬁ( etan’y+h +7’Ag)<t> 3
1 0 0
Py = %(——smﬂ-l—h + 14 ) , (3.2)

where we have written the VEVs in terms of the electroweak scale, fixed at v = 246 GeV,
and three other parameters: (,7 € (0, m/2) and ¢ > 0. These VEVs are related to
the parameters in the effective potential by the extremization conditions listed in the
Appendix. Note that the phases of the VEVs for ¢,, and ¢,, are fixed by the tadpole
terms, the relative phase of the VEVs for H, and H,, is fixed by the third term in Eq. (3.1),
and the phase of H, has been chosen in the Yukawa couplings (2.7).

G* and G° are the Nambu-Goldstone bosons that become the longitudinal W and
Z. Altogether there are nine massive degrees of freedom, which are characterized by
their electric charge and CP-parity: two charged states H*, three CP-odd neutral scalars
A° AY,, A, and four CP-even neutral scalars, hf, hy,,
their spectrum, let us discuss the constraints on the parameter space.

hY, and hY . Before dissecting

The H, doublet contributes more to the electroweak symmetry breaking than H; (this
is the motivation for introducing the vector-like quark), so that tan 3 > 1. Due to the
Yukawa couplings of the scalars to their constituents [see Eq. (2.7)], the ¢ and x mix, with

a mass matrix cusin 5
vsinf —ecot € tr
w0 )(®), 3.3
V2 (fz, X1) coty 1/ \xr (3:3)

where the Yukawa coupling £ is given by Eq. (2.5) in the large- N, limit. We are interested

in the case where the x is heavier than the top, so that the corrections to the electroweak
observables are small. This implies ¢ < 1. In what follows we will often consider the limit
in which y decouples, i.e. € < 1. The physical top quark is the light mass eigenstate of
the above matrix:

my & % sin(8 + v) [1 + 0(62)] . (3.4)
Therefore, sin(3 + v) ~ 1/£. For €2 > 1 one has tan 3,tany > 1. More generally, we
allow 8,y € (w/4, 7/2), which also satisfies the cos(# + ) < 0 restriction imposed by
the extremization condition written in the Appendix. Finally, the quartic coupling at

the electroweak scale is related to the Yukawa coupling by A ~ 262 in the large-N, limit,

12



because the quartic coupling at the compositeness scale is assumed to be negligible [see
Eq. (2.6)].

Let us proceed with the computation of the scalar spectrum. The charged Higgs boson,

A tan (8
Mps =0 —1). :
e = 5v <62tan’y ) (35)

This sets the scale for the heavy composite scalars. In addition, this is roughly the scale

H*, has a mass

for the vector-like quark, whose mass is given by

sin 23
2 sin 2y

mx = H*

[1+0(e)] . (3.6)

3.1 CP-odd neutral scalars

From the effective potential one can find the squared-mass matrix for the three CP-odd

neutral scalars, A%, A}, and A :

Av? cos?f3 V2e
2 2 . 1 .
<MHi + 7) <1 +e c0s2fy> Updiag (1,0,0) Uj + vsinﬁdlag (0, Cyetany, Cyy) - (3.7)

Up to an SU(2) transformation, the matrix
cos@;cosfy —sinf; cosbsinb,
Uy=| sinf,cosfy cosf; sinb;sinb, , (3.8)
—sin 6, 0 cos 0,
would define the mixing angles if the C,, and C, were zero (we will see below that this
would not be a viable case). The angles 01,6, € (0,7/2) are given by
tan#y = ecosf tanvy,

tanfly = ecosf3 cosb; . (3.9)

The mass matrix of the CP-odd states is diagonal in the ¢ — 0 limit. Therefore, we
can diagonalize it by expanding in ¢, and we obtain the following squared-masses of the
CP-odd neutral scalars:

t
Mﬁo = MIQIi {1+€2 lcoSﬂ(CAtan7+c%)+%]+0(64)} ’

V2etan ¥

M20 - Ct -
A X' wsin B

[1 — e%cqtany cos f+ 0(64)} ;
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V2e

M:, = C,,———
Ax Xy sin 3

[1 — €2y cos B+ 0(64)] . (3.10)

The two dimensionless coefficients,

. cos [ tan vy

4 1 — (Cy/Co) tany ’

. cos 3
dy, = —————, 3.11
D (10

where
Co= 20 tanB g (3.12)
0= 2+/2¢3 tan vy ’ )

are defined such that the mass eigenstates of the CP-odd neutral scalars take a simple

form:
A} = A%+e(cadd, - cyAS) + O()
A} = A, —ecaA’+ O(€)

A) = A) +edy A+ O(€) (3.13)

The A state is included predominantly in the Higgs doublets. In the small-¢ limit, it
belongs to a linear combination of Higgs doublets, namely (—H;sin 3 + H, cos [3), whose
VEV vanishes. The other states of this linear combination are the charged Higgs and a CP-
even neutral scalar. The degeneracy of these states is lifted only by electroweak symmetry
breaking effects. As a result, the mass splittings among these states are proportional with
v?/M%. ~ €%, which explains the first equation in (3.10).

The A} and A, are predominantly the imaginary parts of the weak-singlet fields. They
are the Nambu-Goldstone bosons associated with the U(1), x U(1), global symmetry of
the effective potential, which is spontaneously broken at a scale of order v/e. The tadpole
terms from the effective potential break the U(1), x U(1), symmetry explicitly, so that
the A? and Ag)( acquire squared-masses proportional to C); and C,,, respectively. This

explains the second and third equations in (3.10).

3.2 CP-even neutral scalars

The composite Higgs sector includes four CP-even neutral scalars. The two states be-

longing to the Higgs doublets, hY, h? , do not mix in the ¢ — 0 limit with the two

tx’

14



0
XX’

eigenstates to leading order in €. As a result we learn that it is convenient to write the

states from the Higgs singlets, A hgx. This allows us to identify immediately the mass

squared-mass matrix for CP-even neutral scalars (without expanding in €) in the basis
(—sin B Y, + cos B Ry, ), (cos B hj +sin B hY ), h), and h) :

: tan ﬂ 2
e A2 diag (tan*y’ 2¢ ) eB
h ™ 262 T . sin Qﬂ 2 sin2ﬂ T
B T diag (sin27€ , QSin%) r
2
V2 diag (0, 0, C\,tanvy, Cyy) (3.14)

+v sin 3
where the 2 X 2 matrix B depends only on  and 7,
sin 3 sin(20 +7) cos(26 + )
siny \ —2cos B cos(B+7) 2sinf cos(f +7)

B (3.15)

and ' is a unitary matrix,

siny  cosvy
I'= . (3.16)

—cosy sinvy
From the mass matrix it can be seen that one of the mass eigenstates, H?, is predomi-
nantly the (—sin 8 hf,4cos 3 h, ) state. Up to mixings of order €, H} forms together with
AY and H* a weak-doublet with a zero VEV. As discussed in the case of A?, the mass
splitting among these states are given by electroweak symmetry breaking effects which

show up in the heavy scalar spectrum only at order €:
Mpo = Mp. [140(€)] (3.17)

This can also be checked directly from the expression for M2,

Two other scalars are linear combinations of the real parts of the weak-singlets and
order ¢ admixtures of the neutral components of the weak-doublets. The third and fourth

lines and rows of M3 give their masses to leading order in €*:

sin 2 ;
MIQ{Ss = Mfliﬁ l+z+z, £ \/(1 + 1y —2y)° — 4 (7 — 2y sm2fy] [1 + 0(62)] ,
(3.18)
where we used the notation
2
9y M2
= Y xS g, (3.19)

X = 9sin28 M2

15



It is straightforward to check that Mflgs are positive everywhere within the parameter

space.

The only remaining mass eigenstate, which we label h°, is predominantly (cos 3 hY, +
sin § h{,). Its mass cancels at leading order in €. This is due to the fact that h° sits
mainly in the only combination of weak-doublets which breaks the electroweak symmetry.
Hence, for fixed v the h® mass does not depend on ¢, whereas the other scalar masses scale
as 1/e. To compute Mpo we have to go to the next-to-leading order in the e expansion.
Fortunately, we do not need to diagonalize the 4 x4 M2 matrix. It is sufficient to compute

the determinant of the mass matrix, and then to use
DetM2 = Mf%OMIQJ?MIQJSM?Ig . (320)
The result is fairly simple:

7y sin?B + z,, cos? B + sin?(3 + )

M? = M? |1 — cos?
he v (B+7) T4, + Ty Sin’y + 1z, cosy

+ 0(62)‘| (3.21)

The mass eigenstate corresponding to this eigenvalue may also be derived by expanding

in powers of e:
h® = sin B h), + cos B by + € (cuhly + chhS,) + O(€) (3.22)
where the two dimensionless coefficients are defined by

Ch sinvy cos(3 + Ty cos 3 i sin 7y
— . fy .(é 7) + Sln(ﬂ + f)/)
ch sin 3 (:ctxx + zysin®y + z, coszv) —1;sin 8 —Cos Y

(3.23)

We are now in a good position for discussing the vacuum stability. The extremum
conditions written down in the Appendix are automatically satisfied because they have
been used to replace the four mass-squared parameters from the effective potential with
four new parameters. Therefore, the vacuum defined by eq. (3.2) is a local minimum if
and only if all four eigenvalues of M2 are positive. We have seen that three of them,
MfI?, M?Ig’ and Mflg are always positive. The only remaining condition, M7, > 0, is
restrictive. For example, if both M a0 and M A9 were of order v or lighter, then z; and z,
were of order ¢?, and Mj; would be negative. Thus, at most one of Mo and My may

be as light as the electroweak scale, the other one having a mass of order v/e or larger.

Imposing M7, > 0 ensures that the vacuum that we study is a local minimum of

the potential, but not necessarily a global minimum. An inspection of the extremum
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conditions shows that there is only one other candidate for a global minimum, namely
that obtained by taking v — 0 and v/e > 0. This is easy to understand, because the
tadpole terms always give rise to VEVs for ¢,; and ¢,,. It is clear that the v > 0
minimum which we study here is deeper than the v = 0 extremum for sufficiently large
and negative values of fo. It seems hard to compute analytically the critical value for

M2

tx?
however that even a local minimum is likely to be very long lived, barriers with sizes of

so that we do not derive the condition for having a completely stable vacuum. Note

order TeV implying lifetimes typically longer than the age of the universe [24].

4 Light Boson Spectrum

In the previous section we have seen that the charged Higgs, three of the CP-even neutral
scalars and one CP-odd neutral scalar are always heavy, with masses of order v/ Av/e, in
the TeV range. The only remaining physical states are the CP-even h°, and the CP-odd
A} and AY. Furthermore, the vacuum stability condition implies that only one of A7 and
Ag)( may have a mass of order v or smaller. Therefore, there are three possible contents
for the composite Higgs spectrum below a TeV scale:

1. Only the A%

2. the h? and A?;

3. the h° and A?c'

In this Section we analyze these cases in turn.

4.1 Standard Model in the decoupling limit

If the only scalar lighter than a scale of order 1 TeV is the CP-even Higgs boson, h°, then
the low energy theory has precisely the Standard Model field content. The corrections
due to the heavier states are of order €2. Therefore, the Standard Model is obtained in
the decoupling limit where ¢ < 1. However, in practice e cannot be smaller than one by
many orders of magnitude if we want to avoid an exponential fine-tuning. Note that the
mass terms in the effective potential have coefficients of order M7, which is larger than
v? by a factor 1/¢2. This means that the extremization conditions listed in the Appendix

require a fine-tuning of order €2.

Due to the current agreement of the Standard Model to the experimental data, it
follows that the Minimal Composite Higgs Model discussed in this paper is viable for

small e. The strongest bound, € < 0.2 comes from the p parameter, which receives
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corrections due to the ¢ — x mixing [5, 6]. This bound is loose enough to avoid worrisome

fine-tuning, but sufficient to make the decoupling limit a reasonable approximation.

Since the Standard Model is the decoupling limit of an underlying theory with dynam-
ical electroweak symmetry breaking, the Higgs boson mass is a function of the parameters
of the high energy theory. Hence, one has to check whether there are restrictions on the
Higgs boson mass in addition to the usual Standard Model upper bounds from unitarity
and triviality, and the lower bounds from direct searches. Note that the indirect upper
bound on M} from the electroweak data is not constraining unless the scale of new physics
is very high [25]. Also, the constraint from vacuum stability at large field is easily relaxed

in the presence of new physics [26].

From the expression for M7, in eq. (3.21) it is clear that the upper end of the Standard
Model range can be reached when z;, z, > 1, which corresponds to large values for p,,
and p,,. By reducing z; and z, continuously we can cover the whole mass range of the
Standard Model Higgs boson.

It is useful to find out in more detail the situations in which M0 may be as light as
O(100) GeV. To this end, we would like to express Mo in terms of the parameters of the
effective potential. For simplicity we will consider the “seesaw limit”, tan 4 > 1, in which
only the H, doublet is responsible for the bulk of electroweak symmetry breaking, and
the top mass is produced almost entirely via the seesaw mechanism. To leading order in

1/tan 3 and €, the Higgs boson squared-mass takes the form

202 l 2M} 4M}E 1
— | (M2, - M)+ —— X [1+—2 | +0 =] .
M%x - BM??X ( w tx) M%x - 3Mt2x Mit - Mt2x &2
(4.1)
In deriving this equation we have used cosy ~ 1/£ < 1, which follows from the expression
(3.4) for the top quark mass, and A = 2£2. The leading order in 1/£? has been derived

previously in [6], where it is argued that there may be natural situations in which the

2
Mho =

underlying theory above the compositeness scale dictates a partial cancellation between

2 2
M, and Mg,
it is sufficient that this cancellation is of order 1/£2 ~ 10%. To see this, let us define a

parameter dy; ~ O(1) by

making a light composite Higgs boson a distinct possibility. In practice

M? d
X _ 14 M (4.2)
M;, &
and assume for simplicity that M7, > M} . The My, dependence on dyy,
M2y~ (1 — dar) 0 (4.3)
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shows that the Higgs boson mass can easily be below the electroweak scale in this case.

One may wonder how large are the radiative corrections to the Higgs boson mass. In
fact we have already included the leading large-N. loop corrections when we derived the
effective potential. The corrections from the quartic and trilinear scalar couplings are
in general significant given that the quartic coupling in the effective potential is large.
However, these contributions are of order 1/N, compared to the ones we included, and

we will assume that their effects do not change qualitatively our results.

Although in the decoupling limit the low energy effective theory looks like the Standard
Model, the Minimal Composite Higgs Model has a distinctive feature: the trilinear and
quartic Higgs boson couplings are large and rather independent of the Higgs boson mass.
The quartic coupling is given by A/8 while the trilinear coupling is ~ Av/2. If the Higgs
boson will be discovered, it is conceivable that its trilinear coupling will be measured at
futures colliders [27], and therefore the Minimal Composite Higgs Model will be tested
even if all other composite states happen to be heavier than the reach of those collider

experiments.

4.2 Light top-axion

If the amount of U(1); explicit symmetry breaking is small, namely C,; < |(¢y:)[?, then
the A? is much lighter than the H*. From Eq. (2.12) we find that the A? has a mass of

the order of the electroweak scale or below for

1)3

< _
~ 2meM? (4.4)

ﬂ'xt

In the limit where p,; = 0, the A} receives a small mass only from the QCD anomaly.
Although such an extreme case is ruled out (see Section 6), we will refer to AY as the

“composite top-axion”, because it couples to the right-handed top.

The h° has a large trilinear coupling to AY pairs:
A 2
£3 ~ 51)0,,5 hO (Ag) . (45)

At tree level, a; ~ €2 because to leading order in ¢, the h° belongs to the Higgs doublets,
whereas the AJ is part of the ¢,, singlet. There are however large one-loop contributions,
as shown in Fig. 3, due to the A > 1 quartic coupling. These give a; ~ 1/N,.. The
contributions from more loops which involve the quartic coupling are suppressed by more

powers of 1/N,, so are unlikely to change the order of magnitude of a;.
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Figure 3: One-loop contribution of the heavy scalars to the trilinear coupling of the Higgs boson
to composite-axion pairs.

This large trilinear coupling is very important for Higgs boson searches if Muo > 2M 4.

The width for the Higgs boson decay into top-axion pairs,

\29202 4fo0
I (hY — A%4%) = tol1— t 4.
(1" = 424) = S5rago\ M2, (4.6)

is of the order of the Higgs mass for a light Higgs boson, and decreases for larger Mjo.

The Higgs boson mass has a simple form when the top-axion is light. To show this,
we remark that My S v ~ eMp+ implies z; S €. Then, using the expression for the

top mass (3.4) with y; = mtﬁ/v ~ 1, we may write the Higgs boson squared-mass as

1
Mpo = M\ ll - — (cosQﬂ +
cos?y

)+ouﬁﬂ. (4.7)

2, &2
It appears that the full Standard Model range is open for the Higgs boson mass, but a
light h° requires cos 3/ cosy ~ 1, or a fine-tuning of z, ~ 1 (i.e., My =~ 2m,). Therefore,
the Higgs boson is generically a very broad resonance, which decays most of the time into

top-axion pairs, or into W and Z pairs for large M.

4.3 Light y-axion

The last possible light composite scalar is Ag. This is similar with the light A? case: for
small f1,, the amount of U(1), explicit breaking is small and the A} may have a mass

below the electroweak scale. We will call Ag the “composite y-axion”.

Recall that there is no region of the parameter space in which both A? and AY are

light. Therefore the only scalar trilinear coupling relevant at current collider energies is
A 2
£3 = §’UCLX ho (Ag)() y (48)
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where the renormalized value of a, is again ~ 1/N,. If Mo > 2M A9, then the branching

. 0 0 0 . . .
ratio for the A" — AJ A) decay mode may be large. The width for the Higgs decay into a
x-axion pair is similar with that from the light-A? case, and can be estimated using the
value of A from Eq. (2.6):

8miv? 4 M7,
T (R® — A%A4%) ~ A1 = = 4.9
( ) N2*Mpo In* (M./m,) M2, (4.9)

Since the k% has Standard Model couplings to the weak gauge bosons (because the

other CP-even neutral scalars decouple up to €?), we can immediately compare its widths

for the decays into y-axions and into W or Z pairs:

[(R— A343)  M2a2vt
T'(h— WW,ZZ) "~ 3M}, ’

(4.10)

where we neglected the y-axion mass and the gauge boson masses. The dominant decay

mode of a Higgs boson lighter than the electroweak scale is into y-axion pairs.

The novel feature of the light y-axion case is that it places an upper bound on the
Higgs boson mass. The condition for a light x-axion, Mg S eMpy+, implies 7, < €,

and the Higgs boson squared-mass becomes
2
M2 =2 [4€cosf— = + O (1/52)] . (4.11)
Tt

Because cos § < 1/&, we find that the upper bound on the Higgs boson mass is 2v. This

bound is not very stringent, but still relevant for searches at the LHC.

5 Composite Scalar Couplings to Quarks and Lep-
tons

The couplings of the light bosons to the quarks and leptons are model dependent, as in a
general two-doublet Higgs model. All quarks and leptons have to couple to at least one
of the two Higgs doublets in order to acquire masses. Such couplings may arise in the
low energy effective theory in various ways, depending on the structure of the underlying
theory above the compositeness scale. A simple possibility is that there are four-fermion

couplings between the ¢, x and the light fermions:
1 _ — ) — —
el [(7%“];2) (77?19 trY7, + 15 ﬁwi) + (WLle) 109 (77;'11 Yitr + 0 w%XR)] +he (5.12)
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Figure 4: Leading-N, contribution to the Yukawa couplings of the Standard Model fermions.

For brevity, we show here only the four-fermion operators involving quarks. The couplings
of Xp? and Tzv? to the leptons have the same form. The generational indices j and
[ run from 1 to 3, while £ runs from 1 to 4 because the yzg may mix with the ug, cgp
and tgr weak eigenstates. The above set of four-fermion operators may be viewed as a
parametrization of the flavor symmetry breaking effects, whose origin could be explained
in principle within a variety of high-energy theories, as discussed in section 2.3. The
four-fermion operators give rise in the low energy theory to Yukawa couplings of the H;
and H, doublets to the quarks and leptons:

— (Phuly) (NoHy + N H, ) + (0r.d%) ioa (G H] + NAHT) (5.13)

gl

The Yukawa coupling constants, A%, M4, \* ', are proportional with the coefficients of
the four-quark operators, n¢, n'¢, n*, n', respectively. The factor of proportionality may
be estimated by computing the leading-/N, contribution shown in Fig. 4, with a physical
cut-off at M., and the result is

€N,
= 82

(A%, X, A, am) (=n®, 0, n*, —n™) . (5.14)

Note that six-fermion couplings and other higher-dimensional couplings can also con-
tribute to the light quark and lepton masses. Below the compositeness scale, they give
rise to terms in the effective Lagrangian involving several Higgs doublets and fermions. If
they give the dominant contribution to some of the fermion masses, then the couplings of
the Higgs boson to those fermions are non-standard [28]. Another possibility for fermion
mass generation is to let all quarks and leptons to participate in a seesaw mechanism,
by extending the vector-like quark sector [7, 29]. In what follows we will ignore these

possibilities, and study the couplings induced by the Yukawa couplings shown above.

Only the linear combination (H,cos@ + H,sin3) has an electroweak asymmetric
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VEV, so that the down-type quark masses are given by

%S}l (X cos B+ Xsin 8) T, (5.15)

where S; and T, are unitary matrices. A similar statement applies to the lepton sector.

diag(mg, ms, mp) =

The only light scalar contained in this linear combination is the h°, and its induced
couplings to down-type quarks or leptons are Standard-Model-like up to corrections of
order €. Note that the b-quark mass requires 7% cot 8 + nid ~ 0.2, which shows that
generically the coefficients of the four-quark operators responsible for light fermion masses

are indeed perturbative at the compositeness scale.

The other linear combination of Higgs doublets,

‘ % <+h?x cos 3 — hi,sin 3 — z'AO)
—H;sinfg + Hy cos 3 = , (5.16)
_H-
has couplings which may induce FCNC’s in the down-type quark sector. The charged
Higgs induces FCNC'’s at one loop level, but is sufficiently heavy to make these effects
insignificant. The neutral states, however contribute to FCNC’s at tree level, and we
have to make sure that these contributions are not too large. The couplings of the neutral
scalars to the down-type quark mass eigenstates are given by
1

V2

+e (—icAA? +id, AY + ey Hy + c'HHg) + 0(62)] : (5.17)

ELS:; (—)\d sin 3 4+ A cos ﬂ) Tydg [Hf +4A°

where cy and ¢ are parameters of order one in the € expansion. Notice that the h°
couplings are not affected by these terms up to order €.

In general, these couplings may be flavor non-diagonal because the FCNC’s induced

by them are suppressed at order €2

. However, in order to avoid too strong bounds on
€2 (which would correspond to fine-tuning), it is preferable to assume that the matrix
S}; (—/\d sin 8 + M4 cos ,8) T, is approximately flavor-diagonal. There are many situations
in which this happens. For example, when the two matrices A* and \'® are approximately

proportional, or when one of them vanishes.

The scalar couplings to up-type quarks are more complicated due to the mixing with
the x. The up-type quark mass matrix is 4 x4, and has large elements corresponding to the

x and t weak eigenstates, given by eq. (3.3). The other elements are given by the Yukawa
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couplings (5.13) and are typically small because they are produced by perturbative four-
quark operators at the M, scale or above. Since the x is much heavier than the electroweak
scale, its mixing with the quarks other than ¢ is small. If we ignore this mixing altogether,
we have a situation similar with that in the down-type sector: the h° has Standard Model
couplings up to corrections of order €?, while the A? and Ag’c have couplings of order €
to the Standard Model fermions. On the other hand, the mixing of the up-type quarks
with the x could lead to certain flavor non-diagonal couplings of the h° which may be
allowed by the FCNC constraints, while producing interesting phenomena such as single-
top decays of the Higgs boson [30]. Note also that the h° has a large coupling, of ~ £//2,

to the 7 xr quark mass eigenstates.

6 Bounds on the Composite Axion

In this section we study the lower mass bounds on the composite axion. These are sensitive
to the axion couplings to fermions, which are of order € or smaller, and depend on its
identity (A? or A?c) only up to an overall constant, as can be seen from eq. (5.17). The
axion-fermion couplings are very model dependent and is beyond the scope of this paper
to comprehensively analyze the mass bounds in all cases. We will rather concentrate on

the cases which are most favorable for a light axion.

The tree level axion couplings to light quarks and leptons have two sources. One of
them is the Yukawa couplings to light fermions of the doublet with no VEV, shown in
Eq. (5.16). These may vanish or be very small because they are not restricted by the
quark and lepton masses. The other source is the Yukawa couplings of the composite
scalars to their constituents, Eq. (2.7). After transforming to the mass eigenstate basis,
these Yukawa interactions induce axion couplings to all the up-type quarks. However,
the mixings between the weak eigenstates of the ¢ or xy with u and ¢ are again unre-
stricted, and may vanish without affecting the CKM matrix. Notice that in this case
the Vs and V4 elements are fixed by the S; unitary matrix [see Eq. (5.15)], while Vy;
and V,, are combinations of the transformations in both the up- and down-type sectors.
Once a predictive and compelling theory of flavor is found, one can decide whether the

aforementioned mixings and couplings are naturally small or vanishing.

Here we will assume they do, so that the only fermions that couple at tree level to the
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composite axion (A?Y or A?() are the ¢t and y mass eigenstates:

A (OP O((]e)) +A° (Oée) 0@) + 0(62)] r (;if) +he., (6.1)

where T' is the unitary matrix given in Eq. (3.16). Therefore, the composite axion may

i§

/A (tr, X1)

be produced at colliders through a ¢ or x loop, but the production rate is too small for
placing bounds even at the Z pole at LEP [31].

The quarkonium decays could in principle constrain the composite axion mass. How-
ever, the current limit on the branching ratio of the most promising decay mode, YT(15) —
A?’X’y, is at the level of 107> [32], which is not sufficient for constraining the composite
axion. Note that this decay occurs through a top-loop, and a suppression factor of order

€2 appears in the width.

The Kt — A?’XWL decay is another usual suspect for constraining the axions. This
again involves a top-loop and is further suppressed by VisVi4, so that no useful mass

bounds can be derived.

More generally, if the axion is coupled at tree level only to the x and ¢, it is sufficiently
insulated from the light fermions to avoid constraints from usual laboratory searches. The
astrophysical constraints are harder to avoid. The composite axion may be produced in
stars if it is light enough, leading to unacceptable cooling rates. At one-loop, the axion
couples to gluon pairs and to photon pairs. Combined, these couplings rule out very
light axions with a decay constant below ~ 10 GeV [32]. In our model the axion decay
constant is of order v/e, implying that a very small value for € is required, which leads to
an exponential fine-tuning. Note that in the limit where the p,, or u,, mass parameter
vanishes, the only contribution to the axion mass is given by the QCD anomaly, and it
is tempting to solve the strong CP problem using the composite axion. However, the
small value for € is not encouraging. We therefore do not attempt to solve the strong CP
problem, and assume that the Peccei-Quinn symmetry is explicitly broken by a non-zero

iyt and i, or by some higher dimensional operators.

The bound on the axion decay constant is avoided if the composite axion is heavier
than the core temperature of the stars by an order of magnitude, because the axion
production is Boltzmann suppressed and the cooling rate is not much affected. The red
giant stars have a core temperature of order 10 keV which impose a lower mass bound of
~ 200 keV on the axion [33].

The larger temperature of the supernova 1987A, about 30 MeV at the center, appears

to yield the most stringent lower limit on the composite axion mass. However, the cooling
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rate of the supernova is not affected by our composite axion, because the very high density
of the newly formed neutron star reduces the axion emission to acceptable levels for an
axion decay constant below ~ 10° GeV [33]. Although the axion flux could not affect the
supernova cooling, there are constraints due to the absence of an axion signal in water
Cerenkov detectors during the SN 1987A [34]. These impose a lower bound of a few
hundred TeV on the axion decay constant. We find more reasonable to evade this bound
by imposing a lower limit on the composite axion mass of @(100) MeV, such that its

production is substantially suppressed.

If A or A9 has a mass between this lower bound and 2m, ~ 270 MeV, then the 7°7°
decay channel is closed, and the composite axion decays predominantly to photon pairs
(assuming that the tree level coupling to e™e™ vanishes). In this case, the CP-even Higgs
boson, which decays most of the time to axion pairs, will have a striking signature at

future colliders: two pairs of almost collinear photons.

7 Discussion

It is instructive to make a comparison of the Minimal Composite Higgs Model (MCHM)
presented here with the Minimal Supersymmetric Standard Model (MSSM). Both these
models have a decoupling limit in which they look like the Standard Model, and therefore
are consistent with current electroweak precision data. Both models include two Higgs
doublets, but the composite model requires also two gauge singlet fields resulting in a more

complicated Higgs sector. The top quark plays an active role in electroweak symmetry
breaking within both the MCHM and MSSM.

These two models may be viewed as effective theories whose parameters have to be
determined by higher-energy physics. The MCHM includes four coefficients of the four-
quark operators which are fixed by the gauge couplings and representations of the top
and x quarks, and possibly by their position in extra dimensions. The MSSM has soft
supersymmetry breaking parameters which need to be determined within a theory of
dynamical supersymmetry breaking. Similarly, the presence of the gauge invariant fermion
mass terms that are present in the MCHM, and the y term in the MSSM are hopefully
accounted for by physics at higher energy.

From a more theoretical point of view, both the MCHM and the MSSM can be linked
to low energy manifestations of certain features that are likely to occur in a more compre-

hensive theory which includes quantum gravity, such as string or M theory. Furthermore,
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in the presence of extra dimensions compactified at a scale in the TeV range, the compos-
ite Higgs model is compatible with gauge coupling unification [19], although this cannot
be checked at the level of precision allowed by the perturbativity of the MSSM.

Despite these similar aspects, the MCHM and MSSM are conceptually different. In
the MCHM there is no fundamental Higgs field. Therefore, the origin of electroweak sym-
metry breaking is found in dynamical phenomena, as opposed to the radiative corrections
involved in the MSSM. Also, the phenomenology of the MCHM and MSSM is different. In
the MCHM there are no superpartners at the electroweak scale, but there is a potentially
light axion, a heavy vector-like quark, and interesting phenomena at scales in the TeV

range, associated with the strong dynamics.

An important phenomenological aspect of the MCHM is the dominant branching ratio
(if allowed kinematically) of the Higgs boson decay into composite axion pairs. The
discovery of the Higgs boson in this decay mode would be a spectacular evidence for
the MCHM. On the other hand, if only a light Standard Model Higgs boson will be
discovered, it will probably be necessary to measure its trilinear coupling or to experiment
with colliders at higher energies in order to distinguish between the MCHM, the MSSM,

or other models with a decoupling limit.
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discussions.

Postscript: A related study of a Top Quark Seesaw Model has appeared while this
work was concluded [35]. The focus of that study is rather different than in this paper.
For example, the models discussed there do not have a decoupling limit in which the

Standard Model with a light Higgs boson is recovered.

Appendix: Extremization Conditions for the Effective
Potential

In this Appendix we list the extremization conditions for the effective potential studied in
Section 3. These can be read from Eq. (3.1) by imposing the cancellation of the tadpole

terms:

oV (0) Av? [ tan 3
ang = vcosf3 [Mft + 22 (rstanfy +e ]| =0
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where we introduced for convenience the following notation:

ry = 225 cos(B+ 1) - (A.2)

Note that MEX < 0 requires cos(f3 4+ ) < 0, while the expression for the top mass (3.4)

imposes

< <-1+ é +Loa/e . (A.3)
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